

Example: (3,2) Single-parity-check code

- If we receive 001, 111, 010, or 100, we know that something went wrong in the transmission.
- Suppose we transmitted 101 but the error pattern is 110.
 - The received vector is 011
 - 011 is still a valid codeword.
 - The error is undetectable.

Error Correction

- In **FEC** (forward error correction) system, when the decoder detects error, the arithmetic or algebraic structure of the code is used to determine which of the valid codewords was transmitted.
- It is possible for a detectable error pattern to cause the decoder to select a codeword other than that which was actually transmitted. The decoder is then said to have committed a **decoding error**.

68

Square array for error correction by parity checking.

- The codeword is formed by arranging *k* message bits in a square array whose rows and columns are checked by $2\sqrt{k}$ parity bits.
- A transmission error in one message bit causes a row and column parity failure with the error at the intersection, so single errors can be corrected.

$$\underline{\mathbf{b}} = [b_1, b_2, \dots, b_9]$$

 $\mathbf{x} = [b_1, b_2, \dots, b_9, p_1, p_2, \dots, p_6]$

[Carlson & Crilly, p 594]

ECS 452: In-Class Exercise # 16

Instructions

a.

- Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
- 2. Only one submission is needed for each group.
- 3. [ENRE] Explanation is not required for this exercise.
- 4. Do not panic.

Date: 31 / 3 / 2020				
Name	ID (last 3 digits)			

1. Consider a linear block code that uses *parity checking on a square array*:

First, we use the <mark>provided</mark> definition to write down the		b_1	<i>b</i> ₃	p_1	$p_1 = b_1 \oplus b_3$	
equations that produce the parity bits. This definition is exactly the same as the one		<i>b</i> ₂	b_4	p_2	$p_2 = b_2 \oplus b_4$	
given in lecture when we defined parity checking on a square array	$p_3 = b_1 \oplus b_2$	p_3	p_4	$p_4 = b_3 \oplus b_4$		

Each parity bit p_i is calculated such that the corresponding row or column has even parity.

Suppose the following bits arrangement is used in the codeword:

Recall that the 1s and 0s in the j^{th} column of **G** tells which positions of the data bits are combined (\bigoplus) to produce the j^{th} bit in the codeword.

b. Find the codeword for the message $\mathbf{b} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$. Method 1: First, we fill out the array above with the message. Then, we calculate the parity bits.

1	1	p_1	1	1	0
0	0	p_2	0	0	0
p_3	p_4		1	1	

The codeword can be read directly from the array: $\underline{\mathbf{x}} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$.

Method 2: It is still true that $\underline{\mathbf{x}} = \underline{\mathbf{b}}\mathbf{G}$. Therefore, we can still use our old technique: to find $\underline{\mathbf{x}}$ when $\underline{\mathbf{b}} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$, we simply need to add the first and the third rows of \mathbf{G} . This also gives $\underline{\mathbf{x}} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$.

Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th 5.1 Binary Linear Block Codes

Introduction to Minimum Distance

MATLAB: Distance Matrix and d_{min}

```
function D = distAll(C)
                             This can be used to find d_{\min} for all block codes.
M = size(C, 1);
                             There is no assumption about linearity of the
D = zeros(M,M);
                              code. Soon, we will see that we can simplify the
for i = 1:M-1
                              calculation when the code is known to be linear.
     for j = (i+1):M
          D(i,j) = sum(mod(C(i,:)+C(j,:),2));
     end
end
                                         >> C=[0 0 0 0; 0 1 0 0; ...
D = D+D';
                                               1 0 0 0 1; 1 1 1 1 1];
                                         >> distAll(C)
function dmin = dmin block(C)
                                         ans =
                                                                5
                                              0
                                                    1
                                                          2.
D = distAll(C);
                                              1
                                                    0
                                                          3
                                                                4
Dn0 = D(D>0);
                                              2
                                                          0
                                                                3
                                                    3
dmin = min(Dn0);
                                                          3
                                              5
                                                    4
                                                                0
                                         >> dmin = dmin_block(C)
                                         dmin =
                                              1
```


d_{\min} for linear block code

- For any linear block code, the minimum distance (d_{\min}) can be found from the minimum weight of its nonzero codewords.
 - So, instead of checking $\binom{2^k}{2}$ pairs, simply check the weight of the 2^k codewords.

```
function dmin = dmin_linear(C)
w = sum(C,2);
w = w([w>0]);
dmin = min(w);
```

Proof

Because the code is linear, for any two distinct codewords $\underline{\mathbf{c}}^{(1)}$ and $\underline{\mathbf{c}}^{(2)}$, we know that $\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)} \in \mathcal{C}$; that is $\underline{\mathbf{c}}^{(1)} \bigoplus \underline{\mathbf{c}}^{(2)} = \underline{\mathbf{c}}$ for some nonzero $\underline{\mathbf{c}} \in \mathcal{C}$. Therefore,

$$d(\underline{\mathbf{c}}^{(1)}, \underline{\mathbf{c}}^{(2)}) = w(\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)}) = w(\underline{\mathbf{c}})$$
 for some nonzero $\underline{\mathbf{c}} \in \mathcal{C}$.

This implies

$$\min_{\substack{\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}\in\mathcal{C}\\\underline{\mathbf{c}}^{(1)}\neq\underline{\mathbf{c}}^{(2)}}} d(\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}) \geq \min_{\substack{\underline{\mathbf{c}}\in\mathcal{C}\\\underline{\mathbf{c}}\neq\underline{\mathbf{0}}}} w(\underline{\mathbf{c}}).$$

Note that inequality is used here because we did not show that $\underline{c}^{(1)} \oplus \underline{c}^{(2)}$ can produce all possible nonzero $\underline{\mathbf{c}} \in \mathcal{C}$. $\min_{\substack{\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}\in\mathcal{C}\\\underline{\mathbf{c}}^{(1)}\neq\underline{\mathbf{c}}^{(2)}}} d(\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}) \stackrel{\clubsuit}{=} \min_{\substack{\underline{\mathbf{c}}\in\mathcal{C}.\\\underline{\mathbf{c}}\neq\underline{\mathbf{0}}}} w(\underline{\mathbf{c}})$

Next, for any nonzero $\underline{c} \in C$, note that

$$d(\underline{\mathbf{c}},\underline{\mathbf{0}}) = w(\underline{\mathbf{c}} \oplus \underline{\mathbf{0}}) = w(\underline{\mathbf{c}}).$$

Note that $\underline{c}, \underline{0}$ is just one possible pair of two distinct codewords. This implies

$$\min_{\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}\in\mathcal{C}\atop\underline{\mathbf{c}}^{(1)}\neq\underline{\mathbf{c}}^{(2)}} d(\underline{\mathbf{c}}^{(1)},\underline{\mathbf{c}}^{(2)}) \leq \min_{\underline{\mathbf{c}}\in\mathcal{C},\atop\underline{\mathbf{c}}\neq\underline{\mathbf{0}}} w(\underline{\mathbf{c}}).$$

78

Example

$$G = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
 $\underline{X} = \underline{b}G = \begin{bmatrix} b_1 & b_2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} b_2 & b_1 & b_1 & b_1 \oplus b_2 \end{bmatrix}$

Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5.1 Binary Linear Block Codes

Probability of Error Patterns and Minimum Distance Decoder

Probability of Error Patterns

- Recall: We assume that the channel is **BSC** with crossover probability **p**.
- For the discrete memoryless channel that we have been considering since Chapter 3,
 - the probability that error pattern $\underline{\mathbf{e}} = 00101$ is (1-p)(1-p)p(1-p)p.
 - Note also that the error pattern is independent from the transmitted vector $\underline{\underline{x}}$
- In general, from Section 3.4, the probability the error pattern **e** occurs is

$$p^{d(\underline{\mathbf{x}},\underline{\mathbf{y}})}(1-p)^{n-d(\underline{\mathbf{x}},\underline{\mathbf{y}})} = \left(\frac{p}{1-p}\right)^{d(\underline{\mathbf{x}},\underline{\mathbf{y}})} (1-p)^n = \left(\frac{p}{1-p}\right)^{w(\underline{\mathbf{e}})} (1-p)^n$$

- If we assume *p* < 0.5,
 the error patterns that have larger weights are less likely to occur.
 - This also supports the use of minimum distance decoder.

• Extension: For vector and matrix, apply the operations to the element the same way that addition and multiplication would normally apply (except that the calculations are all in GF(2)).

Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong

<u>prapun@siit.tu.ac.th</u>

5.1 Binary Linear Block Codes

Properties of d_{\min}

d_{\min} : two important facts

- For any linear block code, the minimum distance (d_{min}) can be found from the minimum weight of its nonzero codewords.
 - So, instead of checking $\binom{2^k}{2}$ pairs, simply check the weight of the 2^k codewords.

• A code with minimum distance *d*_{min} can

- detect all error patterns of weight $w \leq d_{\min}$ -1.
- correct all error patterns of weight $w \leq \left|\frac{d_{\min}-1}{2}\right|$.

the floor function

Visual Interpretation of d_{\min}

Visual Interpretation of d_{\min}

- Consider all the (valid) codewords (in the codebook).
- We can find the distances between them.

Visual Interpretation of d_{min}

- When we draw a circle (sphere, hypersphere) of radius d_{\min} around any codeword, we know that there can not be another codeword inside this circle.
- The closest codeword is at least d_{\min} away.

Visual Interpretation of d_{min}

- When we draw a circle (sphere, hypersphere) of radius d_{\min} around any codeword, we know that there can not be another codeword inside this circle.
- The closest codeword is at least d_{\min} away.

Visual Interpretation of d_{min}

- When we draw a circle (sphere, hypersphere) of radius d_{\min} around any codeword, we know that there can not be another codeword inside this circle.
- The closest codeword is at least d_{\min} away.

92

d_{min} and Error Detection

- Suppose codeword $\underline{\mathbf{c}}^{(5)}$ is chosen to be transmitted; that is $\mathbf{x} = \mathbf{c}^{(5)}$.
- The received vector **y** can be calculated from

 $\underline{\mathbf{y}} = \underline{\mathbf{x}} \oplus \underline{\mathbf{e}}.$

• When $d_{\min} < w$, it is possible that w errors can change a valid codeword into another valid codeword.

<text><text><figure>

d_{min} and Error Detection

- To be able to **detect** *all w*-bit errors, we need $d_{\min} \ge w + 1$.
 - With such a code there is no way that *w* errors can change a valid codeword into another valid codeword.
 - When the receiver observes an illegal codeword, it can tell that a transmission error has occurred.

When $d_{\min} > w$, there is no way that w errors can change a valid codeword into another valid codeword.

When $d_{\min} \leq w$, it is possible that w errors can change a valid codeword into another valid codeword.

d_{\min} is an important quantity

- To be able to **correct** *all w*-bit errors, we need $d_{\min} \ge 2w + 1$.
 - This way, the legal codewords are so far apart that even with *w* changes, the original codeword is still *closer* than any other codeword.

ECS 452: In-Class Exercise # 15

-

Instructions

- Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
- 2. Only one submission is needed for each group.
- 3. Do not panic.
- 1. Consider a linear block code whose generator matrix is

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

- a. Find the length *k* of each message block **G** has 3 rows. Therefore, k = 3.
- b. Find the code length n**G** has 5 columns. Therefore, n = 5.
- c. In the table below, list all possible data (message) vectors $\underline{\mathbf{b}}$ in the leftmost column (one in each row). Then, find the corresponding codewords $\underline{\mathbf{x}}$ and their weights in the second and third columns, respectively.

	<u>b</u>				<u>X</u>			$w(\underline{\mathbf{x}})$
<i>b</i> ₁	<i>b</i> ₂	<i>b</i> ₃	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	
0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0	2
0	1	0	0	1	1	0	1	3
0	1	1	0	0	1	1	1	3
1	0	0	1	0	0	0	1	2
1	0	1	1	1	0	1	1	4
1	1	0	1	1	1	0	0	3
1	1	1	1	0	1	1	0	3

d. Find the minimum distance d_{\min} for this code. Because the code is linear,

$$d_{\min} = \min_{\mathbf{x} \neq \mathbf{0}} w(\mathbf{x}) = 2.$$

First, we list all possible <u>**b**</u>.

Next, from $\underline{\mathbf{x}} = \underline{\mathbf{b}}\mathbf{G}$, we can calculate the codeword $\underline{\mathbf{x}}$ corresponding to each $\underline{\mathbf{b}}$ one by one. Alternatively, by considering $\underline{\mathbf{b}} = [b_1b_2b_3]$ and carrying out the multiplication $\underline{\mathbf{x}} = [b_1b_2b_3]\mathbf{G}$, we have

$$\mathbf{x} = [b_1, b_2 \bigoplus b_3, b_2, b_3, b_1 \bigoplus b_2].$$

So, each "column" of the answer for $\underline{\mathbf{x}}$ can be calculated accordingly. In particular,

- the 1st, 3rd, and 4th columns are simply copied from the columns for b₁, b₂, and b₃ respectively,
- the 2^{nd} column is simply the sum of the columns for b_2 and b_3
- the 5th column is simply the sum of the columns for b_1 and b_2 .
- e. What is the maximum number of bit errors that this code can guarantee to detect?

$$d_{\min} - 1 = 1$$

f. What is the maximum number of bit errors that this code can guarantee to correct?

$$\left\lfloor \frac{d_{\min} - 1}{2} \right\rfloor = \left\lfloor \frac{1}{2} \right\rfloor = \mathbf{0}$$

2. Consider a linear block code whose generator matrix is

Suppose the minimum distance d_{\min} for this code is $d_{\min} = 8$.

a. What is the maximum number of bit errors that this code can guarantee to detect?

$$d_{\min} - 1 = 7$$

b. What is the maximum number of bit errors that this code can guarantee to correct?

$$\left\lfloor \frac{d_{\min} - 1}{2} \right\rfloor = \left\lfloor \frac{7}{2} \right\rfloor = 3$$

Date: 27 / 3 / 2020					
Name	D (last 3 digits)				