Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

5.1 Binary Linear Block Codes

Error Control, Error Detection, Error Correction

Error Detection

Two types of error control:

1. error detection
2. error correction

- Error detection: the determination of whether errors are present in a received word
- usually by checking whether the received word is one of the valid codewords.

- When a two-way channel exists between source and destination, the receiver can request retransmission of information containing detected errors.
- This error-control strategy is called automatic-repeat-request (ARQ).
- An error pattern is undetectable if and only if it causes the received word to be a valid codeword other than that which was transmitted.
- Ex: In single-parity-check code, error will be undetectable when the number of bits in error is even.

n k
 Example: $(3,2)$ Single-parity-check code

- If we receive $001,111,010$, or 100 , we know that something went wrong in the transmission.
- Suppose we transmitted 101 but the error pattern is 110 .
- The received vector is 011
- 011 is still a valid codeword.
- The error is undetectable.

Error Correction

- In FEC (forward error correction) system, when the decoder detects error, the arithmetic or algebraic structure of the code is used to determine which of the valid codewords was transmitted.
- It is possible for a detectable error pattern to cause the decoder to select a codeword other than that which was actually transmitted. The decoder is then said to have committed a decoding error.

Square array for error correction by parity checking.

- The codeword is formed by arranging k message bits in a square array whose rows and columns are checked by $2 \sqrt{k}$ parity bits.
- A transmission error in one message bit causes a row and column parity failure with the error at the intersection, so single errors can be corrected.

Example: square array

- $k=9$
- $2 \sqrt{9}=6$ parity bits.

$$
\begin{aligned}
\underline{\mathbf{b}} & =\left[b_{1}, b_{2}, \ldots, b_{9}\right] \\
& =101110100 \\
\underline{\mathbf{x}} & =\left[b_{1}, b_{2}, \ldots, b_{9}, p_{1}, p_{2}, \ldots, p_{6}\right] \\
& =101110100 \mathbf{0 0} \mathbf{1 1 1 1}
\end{aligned}
$$

1	0	1	0
1	1	0	-
1	0	0	1
1	1	1	-

b_{1}	b_{2}	b_{3}	p_{1}
b_{4}	b_{5}	b_{6}	p_{2}
b_{7}	b_{8}	b_{9}	p_{3}
p_{4}	p_{5}	p_{6}	

$\underline{y}=10{ }^{1}(110100 / 001111$

ECS 452: In-Class Exercise \# 16

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Only one submission is needed for each group.
3. [ENRE] Explanation is not required for this exercise.
4. Do not panic.

Date: $31 / 3 / 2020$			
Name	ID		

1. Consider a linear block code that uses parity checking on a square array:

First, we use the provided
definition to write down the equations that produce the parity bits. This definition is exactly the same as the one given in lectuke when we defined parity ckecking on a square array

b_{1}	b_{3}	p_{1}
b_{2}	b_{4}	p_{2}
p_{3}	p_{4}	$p_{4}=b_{1}=b_{1} \oplus b_{3} \oplus b_{4}$

Each parity bit p_{i} is calculated such that the corresponding row or column has even parity.
Suppose the following bits arrangement is used in the codeword:

$$
\mathbf{G}=\left(\begin{array}{llllllll}
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

a. Find the generator matrix \mathbf{G}.

Recall that the 1 s and 0 s in the $j^{\text {th }}$ column of \mathbf{G} tells which positions of the data bits are combined (\oplus) to produce the $j^{\text {th }}$ bit in the codeword.
b. Find the codeword for the message $\underline{\mathbf{b}}=\left[\begin{array}{llll}1 & 0 & b_{b} & b_{c}\end{array}\right]$.

Method 1: First, we fill out the array above with the message. Then, we calculate the parity bits.

1	1	p_{1}
0	0	p_{2}
p_{3}	p_{4}	

The codeword can be read directly from the array: $\underline{\underline{x}}=\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right)$.
Method 2: It is still true that $\underline{\underline{x}}=\underline{\mathbf{b}} \mathbf{G}$. Therefore, we can still use our old technique: to find $\underline{\mathbf{x}}$ when
$\underline{\mathbf{b}}=\left[\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right]$, we simply need to add the first and the third rows of \mathbf{G}. This also gives
$\underline{\mathbf{x}}=\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right)$.

Review: Even Parity

- A binary vector (or a collection of 1 s and 0 s) has even parity if and only if the number of 1 s in there is even.
- Suppose we are given the values of all the bits except one bit.
- We can force the vector to have even parity by setting the value of the remaining bit to be the sum of the other bits.

Single-parity-check code
$\left[\begin{array}{lllll}1 & 0 & 1 & 1 & 0\end{array}\right]$

Square array

1	0	1	$=$
0	1	1	$=$
0	0	1	$=$
	-	-	
	-		

Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

5.1 Binary Linear Block Codes

Minimum Distance ($d_{\text {min }}$)

The minimum distance ($d_{\text {min }}$) of a block code is the minimum Hamming distance between all pairs of distinct codewords. suppose $|C|=M$. Then, need to

- Ex.:

A channel encoder map blocks of two bits to five-bit (channel) codewords. The four possible codewords are $00000,01000,10001$, and 11111. A codeword is transmitted over the BSC with crossover probability $p=0.1$.
(a) What is the minimum (Hamming) distance $d_{\text {min }}$ among the codewords?

$d_{\text {min }}=1$	00000	01000	10001	11111	
	00000		1	2	5
	01000			3	4
	10001				3
	11111				

- Ex. Repetition code:

$000 \cdots 0$

$\int_{\min }=n$

MATLAB: Distance Matrix and $d_{\text {min }}$

function D = distAll(C)
$M=\operatorname{size}(C, 1) ;$
D = zeros (M,M);
for $i=1: M-1$ for $j=(i+1): M$

This can be used to find $d_{\text {min }}$ for all block codes. $D(i, j)=\operatorname{sum}(\bmod (C(i,:)+C(j,:), 2))$;
end
end
D = D+D';
function admin = dmin_block(C)
D = distAll(C);
Dn0 = D(D>0);
din $=\min (D n 0) ;$

```
>> C=[[\begin{array}{lllllllllll}{0}&{0}&{0}&{0}&{0;}&{0}&{1}&{0}&{0}&{0}\\{1}&{0}&{0}&{0}&{1;}&{1}&{1}&{1}&{1}&{1}\end{array}];
>> distAll(C)
ans =
\begin{tabular}{llll}
0 & 1 & 2 & 5 \\
1 & 0 & 3 & 4 \\
2 & 3 & 0 & 3 \\
5 & 4 & 3 & 0
\end{tabular}
>> dmin = dmin_block(C)
dmin =
```


Weight and Distance

- The weight of a vector is the number of nonzero coordinates in the vector.
- The weight of a vector $\underline{\mathbf{x}}$ is commonly written as $\boldsymbol{W}(\underline{\mathbf{x}})$.
- Ex. $w(010111)=4$
- For BSC with cross-over probability $p<0.5$, error pattern with smaller weights (less \#1s) are more likely to occur.
- The Hamming distance between two n-bit blocks is the number of coordinates in which the two blocks differ.
- Ex. $d(010111,011011)=2$
- Note:
$d\left(x_{1}, y_{2}\right)=w\left(\underline{x}\left(\underset{y}{y_{1}}\right)\right.$
- The Hamming distance between any two vectors equals the weight of their sum.
- The Hamming distance between the transmitted codeword $\underline{\mathbf{X}}$ and the received vector \mathbf{y} is the same as the weight of the corresponding error

$d_{\text {min }}$ for linear block code

- For any linear lock code, the minimum distance ($d_{\text {min }}$) can be found from the minimum weight of it nonzero codewords.
- So, instead of checking $\binom{2^{k}}{2}$ pairs, simply check the weight of the 2^{k} codewords.

```
function dmin = dmin_linear(C)
w = sum(C,2);
w = w([w>0]);
dmin = min(w);
```


Proof

Because the code is linear, for any two distinct codewords $\underline{\mathbf{c}}^{(1)}$ and $\underline{\mathbf{c}}^{(2)}$, we know that $\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)} \in \mathcal{C}$;
that is $\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)}=\underline{\mathbf{c}}$ for some nonzero $\underline{\mathbf{c}} \in \mathcal{C}$. Therefore,

$$
d\left(\underline{\mathbf{c}}^{(1)}, \underline{\mathbf{c}}^{(2)}\right)=w\left(\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)}\right)=w(\underline{\mathbf{c}}) \text { for some nonzero } \in \mathcal{C}
$$

This implies

$$
\min _{\substack{\mathbf{c}^{(1)}, \mathbf{c}^{(2)} \in \mathcal{C} \\ \underline{\mathbf{c}}^{(1)} \neq \underline{\underline{c}}^{(2)}}} d\left(\underline{\mathbf{c}}^{(1)}, \underline{\mathbf{c}}^{(2)}\right) \geq \min _{\substack{\mathbf{c} \in \mathcal{C} \\ \underline{\mathbf{c} \neq \mathbf{0}}}} w(\underline{\mathbf{c}}) .
$$

Note that inequality is used here because we did not show that $\underline{\mathbf{c}}^{(1)} \oplus \underline{\mathbf{c}}^{(2)}$ can produce all possible nonzero $\mathbf{c} \in \mathcal{C}$.

Next, for any nonzero $\underline{\mathbf{c}} \in \mathcal{C}$, note that

$$
d(\underline{\mathbf{c}}, \underline{\mathbf{0}})=w(\underline{\mathbf{c}} \oplus \underline{\mathbf{0}})=w(\underline{\mathbf{c}}) .
$$

$$
\begin{aligned}
& \min _{\underline{\mathbf{c}}^{(1)}, \mathbf{c}^{(2)} \in \mathcal{C}} d\left(\underline{\mathbf{c}}^{(1)}, \underline{\mathbf{c}}^{(2)}\right) \stackrel{\downarrow}{=} \min _{\substack{\mathbf{c} \in \mathcal{C} . \\
\underline{\mathbf{c}} \neq \underline{\mathbf{0}}}} w(\underline{\mathbf{c}}) \\
& \underline{\mathbf{c}}^{(1)} \neq \underline{\mathbf{c}}^{(2)}
\end{aligned}
$$

Note that $\underline{\mathbf{c}}, \underline{\mathbf{0}}$ is just one possible pair of two distinct cod words. This implies

$$
\min _{\substack{\underline{\mathbf{c}}^{(1)}, \mathbf{c}^{(2)} \in \mathcal{C} \\ \underline{\mathbf{c}}^{(1)} \neq \underline{\underline{c}}^{(2)}}} d\left(\underline{\mathbf{c}}^{(1)}, \underline{\mathbf{c}}^{(2)}\right) \leq \min _{\substack{\underline{\mathbf{c} \in \mathcal{C}} \\ \underline{\mathbf{c}} \neq \mathbf{0}}} w(\underline{\mathbf{c}}) .
$$

Example

$$
\left.\begin{array}{c}
\mathbf{G}=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right] \\
\underline{\mathbf{x}}=\underline{\mathbf{b}} \mathbf{G}=\left[\begin{array}{ll}
b_{1} & b_{2}
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right] \\
=\left[\begin{array}{lll}
b_{2} & b_{1} & b_{1}
\end{array} b_{1} \oplus b_{2}\right.
\end{array}\right]-
$$

$\underline{\text { b }}$	$\underline{\text { x }}$	w- ${ }^{(x)}$
00	0000	
01	1001	(2)
10	0111	3
11	1110	3

Example

$$
\mathbf{G}=\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

$\underline{\mathbf{b}}$		$\underline{\mathbf{x}}$							
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	1	1	1	0	
0	1	0	0	1	0	0	1	1	
0	1	1	0	1	1	1	0	1	
1	0	0	1	0	0	1	0	1	
1	0	1	1	0	1	0	1	1	4
1	1	0	1	1	0	1	1	0	4
1	1	1	1	1	1	0	0	0	3

>> G = [1 0010 1; $010011 ; 001110] ;$
>> [BC] = blockCodebook(G);
>> dmin = dmin_block(C)
dmin =
3
>> dmin = dmin_linear(C)
dmin $=$

Example

$\mathbf{G}=\left[\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]$

$\underline{\mathbf{b}}$						$\underline{\mathbf{x}}$					
			$w(\underline{\mathbf{x}})$								
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	1	0	1	0	1	4
0	0	1	0	0	0	1	0	1	1	0	3
0	0	1	1	1	0	0	0	0	1	1	3
0	1	0	0	1	0	0	1	1	0	0	3
0	1	0	1	0	0	1	1	0	0	1	3
0	1	1	0	1	0	1	1	0	1	0	4
0	1	1	1	0	0	0	1	1	1	1	4
1	0	0	0	1	1	1	0	0	0	0	3
1	0	0	1	0	1	0	0	1	0	1	3
1	0	1	0	1	1	0	0	1	1	0	4
1	0	1	1	0	1	1	0	0	1	1	4
1	1	0	0	0	1	1	1	1	0	0	4
1	1	0	1	1	1	0	1	0	0	1	4
1	1	1	0	0	1	0	1	0	1	0	3
1	1	1	1	1	1	1	1	1	1	1	7

Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th

5.1 Binary Linear Block Codes

Probability of Error Patterns and Minimum Distance Decoder

Probability of Error Patterns

- Recall:We assume that the channel is BSC with crossover probability \boldsymbol{p}.
- For the discrete memoryless channel that we have been considering since Chapter 3,
- the probability that error pattern $\mathbf{e}=00101$ is

$$
(1-p)(1-p) p(1-p) p
$$

- Note also that the error pattern is independent from the transmitted vector \underline{x}
- In general, from Section 3.4, the probability the error pattern \mathbf{e} occurs is

$$
p^{d(\underline{x}, \underline{y})}(1-p)^{n-d(\underline{x}, \underline{y})}=\left(\frac{p}{1-p}\right)^{\bar{d}(\underline{x}, \underline{y})}(1-p)^{n}=\left(\frac{p}{1-p}\right)^{w(\mathbb{e})}(1-p)^{n}
$$

- If we assume $\boldsymbol{p}<0.5$, the error patterns that have larger weights are less likely to occur.
- This also supports the use of minimum distance decoder.

BSC and the Error Pattern

Add $e=0$:

- For one use of the channel, e
 as input Add $e=1$: output is different
- Again, to transmit k information bits, the channel is used $n^{\text {input }}$

29
times.

Ex. $\underline{x}=01010$

$$
z=01111
$$

$1 \times k$ $\underline{e}=00101$

GF(2)

- The construction of the codes can be expressed in matrix form using the following definition of addition and multiplication of bits:
checking for difference:
$x+y=1$ iff $x \neq y$

x (f) $y=0$ of $x=y \quad 1	$		0	1	1	1

- Note that $\quad x \oplus$

\oplus	0	1			
0	0	1	\bullet	0	1
1	1	0	1	0	0
$0=x$	$0 \oplus 0=0$				

$$
\begin{array}{ll}
x \oplus 1=\bar{X} & 0 \oplus 1=1 \\
& 1 \oplus 1=0 \\
& 0 \oplus 0=0 \\
X \oplus X=0 & 1 \oplus 1=0
\end{array}
$$

The property above implies $-x=x \rightarrow$ "subtraction =add ition"

- Extension: For vector and matrix, apply the operations to the elements the same way that addition and multiplication would normally apply (except that the calculations are all in $\mathrm{GF}(2)$).

Digital Communication Systems EES 452

Asst. Prof. Dr. Prapun Suksompong

prapun@siit.tu.ac.th
5.1 Binary Linear Block Codes

Properties of $\boldsymbol{d}_{\text {min }}$

$d_{\text {min }}$: two important facts

- For any linear block code, the minimum distance $\left(d_{\text {min }}\right)$ can be found from the minimum weight of its nonzero codewords.
- So, instead of checking $\binom{2^{k}}{2}$ pairs, simply check the weight of the 2^{k} codewords.
- A code with minimum distance $d_{\text {min }}$ can
- detect all error patterns of weight $\mathrm{w} \leq d_{\min }-1$.
- correct all error patterns of weight $\mathrm{w} \leq\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor$.
the floor function

Visual Interpretation of $d_{\text {min }}$

Recall: Codebook construction
Choose $M=2^{k}$ from 2^{n} possibilities to be used as codewords.

86

Triple-repetition code

Single-Parity-check code

Visual Interpretation of $d_{\text {min }}$

Visual Interpretation of $d_{\text {min }}$

- Consider all the (valid) codewords (in the codebook).

Visual Interpretation of $d_{\text {min }}$

- Consider all the (valid) codewords (in the codebook).
- We can find the distances between them.

Visual Interpretation of $d_{\text {min }}$

- Consider all the (valid) codewords (in the codebook).
- We can find the distances between them.
- We can then find $d_{\text {min }}$.

Visual Interpretation of $d_{\text {min }}$

- When we draw a circle (sphere, hypersphere) of radius $d_{\text {min }}$ around any codeword, we know that there can not be another codeword inside this circle.
- The closest codeword is at least $d_{\text {min }}$ away.

$\mathbf{c}^{(6)}$

Visual Interpretation of $d_{\text {min }}$

- When we draw a circle (sphere, hypersphere) of radius $d_{\text {min }}$ around any codeword, we know that there can not be another codeword inside this circle.
- The closest codeword is at least $d_{\text {min }}$ away.

Visual Interpretation of $d_{\text {min }}$

- When we draw a circle (sphere, hypersphere) of radius $d_{\text {min }}$ around any codeword, we know that there can not be another codeword inside this circle.
- The closest codeword is at least $d_{\text {min }}$ away.

$d_{\text {min }}$ and Error Detection

- Suppose codeword $\underline{\mathbf{c}}^{(5)}$ is chosen to be transmitted; that is

$$
\underline{\boldsymbol{x}}=\underline{\mathbf{c}}^{(5)}
$$

$d_{\text {min }}$ and Error Detection

- Suppose codeword $\underline{\mathbf{c}}^{(5)}$ is chosen to be transmitted; that is

$$
\underline{x}=\underline{\mathbf{c}}^{(5)} .
$$

- The received vector \underline{y} can be calculated from

$$
\begin{aligned}
& \underline{y}=\underline{x} \oplus \underline{e} .
\end{aligned}
$$

$d_{\text {min }}$ and Error Detection

- When $d_{\min }>w$, there is no way that w errors can change a valid codeword into another valid codeword.

$d_{\text {min }}$ and Error Detection

- When $d_{\text {min }}<w$, it is possible that w errors can change a valid codeword into another valid codeword.

$d_{\text {min }}$ and Error Detection

- For some codewords, when $d_{\text {min }}=w$, it is possible that w errors can change a valid codeword into another valid codeword.

$d_{\text {min }}$ and Error Detection

- To be able to detect all w-bit errors, we need $d_{\min } \geq w+1$.
- With such a code there is no way that w errors can change a valid codeword into another valid codeword.
- When the receiver observes an illegal codeword, it can tell that a transmission error has occurred.

When $d_{\text {min }}>w$, there is no way that w errors can change a valid codeword into another valid codeword.

When $d_{\text {min }} \leq w$, it is possible that w errors can change a valid codeword into another valid codeword.

$d_{\text {min }}$ and Error Correction

- To be able to correct all w-bit errors, we need $d_{\min } \geq 2 w+1$.
- This way, the legal codewords are so far apart that even with w changes, the original codeword is still closer than any other codeword.

$d_{\text {min }}$ is an important quantity

- To be able to correct all w-bit errors, we need $d_{\min } \geq 2 w+1$.
- This way, the legal codewords are so far apart that even with w changes, the original codeword is still closer than any other codeword.

Example

Consider the code
$\mathcal{C} \in\{0000000000,0000011111,1111100000$, and 1111111111$\}$

- Is it a linear code?

- It can detect (at most) \qquad errors.
- It can correct (at most) \qquad errors.

Example

Consider the code

$\omega=5$

$\omega=10$ $\mathcal{C} \in\{0000000000,000001111, \overbrace{1111100000}$, and $\overbrace{1111111111}\}$

- Is it a linear code?

Yes

- $d_{\text {min }}=\min w(\underline{c})=5$

- It can detect (at most) $\underset{\sim}{ }$ errors.

$$
d_{m: n}-1=5-1=4
$$

- It can correct (at most) \qquad errors.

$$
\left\lfloor\left.\frac{d_{\min }-1}{2} \right\rvert\,\right.
$$

ECS 452: In-Class Exercise \# 15

Instructions

1. Working alone is always permitted. However, working in groups is also allowed if social distancing can be used (via, e.g., online group chat/call). For group work, the group cannot be the same as any of your former group after the midterm.
2. Only one submission is needed for each group.
3. Do not panic.

Date: 27 / 3 / 2020	
Name	

1. Consider a linear block code whose generator matrix is

$$
\mathbf{G}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

a. Find the length k of each message block
\mathbf{G} has 3 rows. Therefore, $k=3$.
b. Find the code length n
\mathbf{G} has 5 columns. Therefore, $n=5$.
c. In the table below, list all possible data (message) vectors $\underline{\mathbf{b}}$ in the leftmost column (one in each row).

Then, find the corresponding codewords $\underline{\mathbf{x}}$ and their weights in the second and third columns,
respectively.

$\underline{\mathbf{b}}$			$\underline{\mathbf{x}}$				
b_{1}	b_{2}	b_{3}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	1	1	0	1
0	1	1	0	0	1	1	1
1	0	0	1	0	0	0	1
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	0
1	1	1	1	0	1	1	0
3							

d. Find the minimum distance $d_{\text {min }}$ for this code. Because the code is linear,

$$
d_{\min }=\min _{\underline{\mathbf{x}} \neq \underline{\mathbf{0}}} w(\underline{\mathbf{x}})=2 .
$$

e. What is the maximum number of bit errors that this code can guarantee to detect?

$$
d_{\min }-1=1
$$

f. What is the maximum number of bit errors that this code can guarantee to correct?

$$
\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor=\left\lfloor\frac{1}{2}\right\rfloor=0
$$

2. Consider a linear block code whose generator matrix is

$$
\mathbf{G}=\left(\begin{array}{llllllllllllllllllll}
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right) .
$$

Suppose the minimum distance $d_{\text {min }}$ for this code is $d_{\text {min }}=8$.
a. What is the maximum number of bit errors that this code can guarantee to detect?

$$
d_{\min }-1=7
$$

b. What is the maximum number of bit errors that this code can guarantee to correct?

$$
\left\lfloor\frac{d_{\min }-1}{2}\right\rfloor=\left\lfloor\frac{7}{2}\right\rfloor=3
$$

