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Error Control, Error Detection, 
Error Correction

Error Detection

67

Error detection: the determination of whether errors are present in a 
received word

usually by checking whether 
the received word is one of the 
valid codewords.

When a two-way channel exists between source and destination, the 
receiver can request retransmission of information containing 
detected errors. 

This error-control strategy is called automatic-repeat-request (ARQ).

An error pattern is undetectable if and only if it causes the received 
word to be a valid codeword other than that which was transmitted.

Ex: In single-parity-check code, error will be undetectable when the number 
of bits in error is even.

Two types of error control:

1. error detection

2. error correction

possibilities

Choose from 
possibilities to be 

used as codewords.



Example: (3,2) Single-parity-check code

68

If we receive 001, 111, 010, 
or 100, we know that 
something went wrong in 
the transmission.

Suppose we transmitted 101 
but the error pattern is 110. 

The received vector is 011
011 is still a valid 
codeword. 
The error is undetectable.

Error Correction

69

In FEC (forward error correction) system, when the 
decoder detects error, the arithmetic or algebraic structure
of the code is used to determine which of the valid 
codewords was transmitted.

It is possible for a detectable error pattern to cause the 
decoder to select a codeword other than that which was 
actually transmitted. The decoder is then said to have 
committed a decoding error.



Square array for error correction by 
parity checking.

70

The codeword is formed by 
arranging k message bits in 
a square array 
whose rows and columns 
are checked by parity 
bits.
A transmission error in one 
message bit causes a row 
and column parity failure 
with the error at the 
intersection, so single 
errors can be corrected.

[Carlson & Crilly, p 594]

Example: square array 

71

parity bits.

[Carlson & Crilly, p 594]

_ _ _ _ _ _



ECS 452: In-Class Exercise # 16 

Instructions 
1. Working alone is always permitted. However, working in groups is also allowed if 

social distancing can be used (via, e.g., online group chat/call). For group work, the 

group cannot be the same as any of your former group after the midterm.  

2. Only one submission is needed for each group. 

3. [ENRE] Explanation is not required for this exercise. 

4. Do not panic.  

 

1. Consider a linear block code that uses parity checking on a square array: 

 
Each parity bit pi is calculated such that the corresponding row or column has even parity.  

Suppose the following bits arrangement is used in the codeword:  

( )41 21 2 3 3 4b b p p b p b p=x . 

 

a. Find the generator matrix G . 

 

𝐆 = (

1 0 1 0 0 1 0 0
0 1 0 1 0 1 0 0
0 0 1 0 1 0 0 1
0 0 0 1 0 0 1 1

) 

 

b. Find the codeword for the message   1 0 1 0=b . 

Method 1: First, we fill out the array above with the message. Then, we calculate the parity bits. 

 

The codeword can be read directly from the array: ( )1 0 0 0 1 1 0 1=x . 

Method 2: It is still true that =x bG . Therefore, we can still use our old technique: to find x  when 

 1 0 1 0=b , we simply need to add the first and the third rows of G . This also gives

( )1 0 0 0 1 1 0 1=x . 

 

 

 

 

      

      

    

1 1   

0 0   

    

1 1 0

0 0 0

1 1

Date: 31 / 3 / 2020 
 

Name ID (last 3 digits) 

    

    

    

  =   ⊕   

  =   ⊕   

  =   ⊕     =   ⊕   

First, we use the provided 

definition to write down the 

equations that produce the 

parity bits. This definition is 

exactly the same as the one 

given in lecture when we 

defined parity checking on a 

square array  

Recall that the 1s and 0s in 
the jth

 

column of G tells 
which positions of the 
data bits are combined 
(⊕) to produce the jth bit 
in the codeword. 
 



Review: Even Parity

72

A binary vector (or a collection of 1s and 0s) has even 
parity if and only if the number of 1s in there is even.

Suppose we are given the values of all the bits except one bit.
We can force the vector to have even parity by setting the value of the 
remaining bit to be the sum of the other bits.

[1 0 1 1 0 _]
Square array Single-parity-check code

Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th

5.1 Binary Linear Block Codes

Digital Communication Systems
EES 452

Introduction to Minimum Distance



Minimum Distance (dmin)

74

The minimum distance (dmin) of a block code is the 
minimum Hamming distance between all pairs of distinct
codewords.

Ex.:

Ex. Repetition code: 

00000 01000 10001 11111

00000 1 2 5

01000 3 4

10001 3

11111

MATLAB: Distance Matrix and dmin

75

function D = distAll(C)
M = size(C,1);
D = zeros(M,M);
for i = 1:M-1

for j = (i+1):M
D(i,j) = sum(mod(C(i,:)+C(j,:),2));

end
end
D = D+D'; >> C=[0 0 0 0 0; 0 1 0 0 0; ...

1 0 0 0 1; 1 1 1 1 1];
>> distAll(C)
ans =

0 1 2     5
1     0     3     4
2     3     0     3
5     4     3     0

>> dmin = dmin_block(C)
dmin =

1

function dmin = dmin_block(C)
D = distAll(C);
Dn0 = D(D>0);
dmin = min(Dn0);

This can be used to find for all block codes. 
There is no assumption about linearity of the 
code. Soon, we will see that we can simplify the 
calculation when the code is known to be linear.



Weight and Distance

76

The weight of a vector is the number of nonzero coordinates in 
the vector.

The weight of a vector is commonly written as .
Ex. 

For BSC with cross-over probability , error pattern with 
smaller weights (less #1s) are more likely to occur.

The Hamming distance between two n-bit blocks is the 
number of coordinates in which the two blocks differ.

Ex. 

Note: 
The Hamming distance between any two vectors equals the weight of their 
sum.
The Hamming distance between the transmitted codeword and the 
received vector is the same as the weight of the corresponding error 
pattern .

dmin for linear block code

77

For any linear block code, the minimum distance (dmin) 
can be found from the minimum weight of its nonzero
codewords.

So, instead of checking pairs, 

simply check the weight of the codewords.

function dmin =  dmin_linear(C)
w = sum(C,2);
w = w([w>0]);
dmin = min(w);



Proof

78

Example

79

b

b b

b b b b

00
01
10
11

0000
1001
0111
1110



Example

80

>> G = [1 0 0 1 0 1; 0 1 0 0 1 1; 0 0 1 1 1 0];
>> [B C] = blockCodebook(G);
>> dmin =  dmin_block(C)
dmin =

3
>> dmin = dmin_linear(C)
dmin =

3

Example

81

>> G = [1 1 1 0 0 0 0; 1 0 0 1 1 0 0;...
0 0 1 0 1 1 0; 1 0 1 0 1 0 1];

>> [B C] = blockCodebook(G);
>> dmin =  dmin_linear(C)
dmin =

3
>> dmin =  dmin_block(C)
dmin =

3
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Probability of Error Patterns

83

Recall: We assume that the channel is BSC with crossover probability .
For the discrete memoryless channel that we have been considering 
since Chapter 3,

the probability that error pattern is

Note also that the error pattern is independent from the transmitted vector 

In general, from Section 3.4, 
the probability the error pattern occurs is 

If we assume , 
the error patterns that have larger weights are less likely to occur.

This also supports the use of minimum distance decoder.



BSC and the Error Pattern

29

For one use of the channel,

Again, to transmit k information bits, the channel is used n
times. 

BSCx y

Encoder BSC

error pattern

k n

Its nonzero elements mark the 
positions of transmission error in y

GF(2)

13

The construction of the codes can be expressed in matrix form 
using the following definition of addition and multiplication of 
bits:

Note that

x

x x
x

x x

x

xThe property above implies

By definition, “ ” is something that, when added with , gives 0.

Extension: For vector and matrix, apply the operations to the elements 
the same way that addition and multiplication would normally apply 
(except that the calculations are all in GF(2)).
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dmin: two important facts
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For any linear block code, the minimum distance (dmin) 
can be found from the minimum weight of its nonzero
codewords.

So, instead of checking pairs, 

simply check the weight of the codewords.

A code with minimum distance dmin can
detect all error patterns of weight w  dmin-1.

correct all error patterns of weight w  .

the floor function



Visual Interpretation of dmin

86

Recall: Codebook construction
Choose from 
possibilities to be used as 
codewords.  

Triple-repetition code Single-Parity-check code

Visual Interpretation of dmin

87

Recall: Codebook construction
Choose from 
possibilities to be used as 
codewords.  



Visual Interpretation of dmin
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Consider all the (valid) codewords (in the codebook).

Visual Interpretation of dmin

89

Consider all the (valid) codewords (in the codebook).

We can find the distances between them.



Visual Interpretation of dmin

90

Consider all the (valid) codewords (in the codebook).

We can find the distances between them.

We can then find .

dmin

Visual Interpretation of dmin
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When we draw a circle (sphere, hypersphere) of radius 
around any codeword, we know that there can not be another 
codeword inside this circle.

The closest codeword is at least away.

dmin



Visual Interpretation of dmin

92

When we draw a circle (sphere, hypersphere) of radius 
around any codeword, we know that there can not be another 
codeword inside this circle.

The closest codeword is at least away.

dmin

dmin

Visual Interpretation of dmin

93

When we draw a circle (sphere, hypersphere) of radius 
around any codeword, we know that there can not be another 
codeword inside this circle.

The closest codeword is at least away.



dmin and Error Detection

94

Suppose codeword is chosen to be transmitted; that is

.

dmin

dmin and Error Detection

95

Suppose codeword is chosen to be transmitted; that is

The received vector can be calculated from 

.



dmin and Error Detection
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When , there is no way that errors can change 
a valid codeword into another valid codeword.

dmin and Error Detection

97

When , it is possible that errors can change a 
valid codeword into another valid codeword.



dmin and Error Detection

98

For some codewords,
when , it is possible that errors can change a 
valid codeword into another valid codeword.

dmin and Error Detection

99

To be able to detect all w-bit errors, we need .
With such a code there is no way that w errors can change a 
valid codeword into another valid codeword. 
When the receiver observes an illegal codeword, it can tell that 
a transmission error has occurred. 

When , there is no way 
that errors can change a valid 
codeword into another valid 
codeword.

When , it is possible 
that errors can change a valid 
codeword into another valid 
codeword.



dmin and Error Correction

100

To be able to correct all w-bit errors, we need .
This way, the legal codewords are so far apart that even with w
changes, the original codeword is still closer than any other 
codeword.

dmin

dmin is an important quantity

101

To be able to correct all w-bit errors, we need .
This way, the legal codewords are so far apart that even with w
changes, the original codeword is still closer than any other 
codeword.

dmin



dmin: two important facts

102

For any linear block code, the minimum distance (dmin) 
can be found from the minimum weight of its nonzero
codewords.

So, instead of checking pairs, 

simply check the weight of the codewords.

A code with minimum distance dmin can
detect all error patterns of weight w  dmin-1.

correct all error patterns of weight w  .

the floor function

Example

103

Repetition code with 

We have seen that it has .

It can detect (at most) ___ errors.

It can correct (at most) ___ errors.



Example

104

Consider the code

Is it a linear code?

dmin = 

It can detect (at most) ___ errors.

It can correct (at most) ___ errors.

0000000000, 0000011111, 1111100000, and 1111111111

0000000000

0000011111

1111100000

1111111111

Example

105

Consider the code

Is it a linear code?

dmin = 

It can detect (at most) ___ errors.

It can correct (at most) ___ errors.

0000000000, 0000011111, 1111100000, and 1111111111

0000000000

0000011111

1111100000

1111111111



ECS 452: In-Class Exercise # 15 

Instructions 
1. Working alone is always permitted. However, working in groups is also allowed if 

social distancing can be used (via, e.g., online group chat/call). For group work, the 

group cannot be the same as any of your former group after the midterm.  

2. Only one submission is needed for each group. 

3. Do not panic.  

 

1. Consider a linear block code whose generator matrix is 

1 0 0 0 1

0 1 1 0 1

0 1 0 1 0

 
 

=
 
 
 

G  

a. Find the length k of each message block 

G has 3 rows. Therefore, 𝑘 = 3. 

b. Find the code length n 

G has 5 columns. Therefore, 𝑛 = 5. 

c. In the table below, list all possible data (message) vectors b in the leftmost column (one in each row). 

Then, find the corresponding codewords x and their weights in the second and third columns, 

respectively. 

b x w(x) 

𝑏1   𝑏2   𝑏3 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 
 

𝑥1   𝑥2   𝑥3   𝑥4   𝑥5 

0 0 0 0 0 

0 1 0 1 0 

0 1 1 0 1 

0 0 1 1 1 

1 0 0 0 1 

1 1 0 1 1 

1 1 1 0 0 

1 0 1 1 0 
 

 

0 

2 

3 

3 

2 

4 

3 

3 
 

 

d. Find the minimum distance dmin for this code. 

Because the code is linear,  
𝑑min = min

�̲�≠�̲�
 𝑤(�̲�) = 2. 

e. What is the maximum number of bit errors that this code can guarantee to detect? 

𝑑min − 1 = 1 

f. What is the maximum number of bit errors that this code can guarantee to correct? 

⌊
𝑑min − 1

2
⌋ = ⌊

1

2
⌋ = 0 

2. Consider a linear block code whose generator matrix is  

0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 1 0

0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 1 1 0 1

1 0 1 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0

 
 

=
 
 
 

G
. 

Suppose the minimum distance dmin for this code is min 8d = . 

a. What is the maximum number of bit errors that this code can guarantee to detect? 

𝑑min − 1 = 7 

b. What is the maximum number of bit errors that this code can guarantee to correct? 

⌊
𝑑min − 1

2
⌋ = ⌊

7

2
⌋ = 3 

Date: 27 / 3 / 2020 
 

Name ID (last 3 digits) 

    

    

    

First, we list all possible 𝐛.  

Next, from  𝐱 = 𝐛𝐆, we can calculate the codeword 𝐱 corresponding to 

each 𝐛 one by one. Alternatively, by considering 𝐛 = [𝑏1𝑏2𝑏3] and 

carrying out the multiplication 𝐱 = [𝑏1𝑏2𝑏3]𝐆, we have  

𝐱 = [𝑏1 , 𝑏2 ⊕ 𝑏3,  𝑏2, 𝑏3, 𝑏1 ⊕ 𝑏2]. 

So, each “column” of the answer for 𝐱 can be calculated accordingly. In 

particular, 

• the 1st, 3rd, and 4th columns are simply copied from the columns 

for 𝑏1, 𝑏2, and 𝑏3 respectively, 

• the 2nd column is simply the sum of the columns for 𝑏2 and 𝑏3 

• the 5th column is simply the sum of the columns for 𝑏1 and 𝑏2. 
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